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ABSTRACT
How canwe order transactions in a replicated statemachine “fairly?”

In the model of prior work [2, 8, 9, 13], each of 𝑛 replicas observes

transactions in a different order, and the system aggregates these

observed orderings into a single order. We argue that this problem

is best viewed through the lens of the classic preference aggregation

problem of social choice theory, in which rankings on candidates

are aggregated into an election result.

Two features make this problem novel and distinct. First, the

number of transactions is unbounded, and an ordering must be

defined over a countably infinite set. And second, decisions must be

made quickly and with only partial information. Additionally, some

faulty replicas might misreport their observations; the influence of

faulty replicas on the output should be well understood.

Prior work studies a “𝛾-batch-order-fairness” property, which di-

vides an ordering into contiguous batches. If a 𝛾 fraction of replicas

receive a transaction 𝜏 before another transaction 𝜏 ′, then 𝜏 ′ cannot
be in an earlier batch than 𝜏 . This definition holds vacuously, so

we strengthen it to require that batches have minimal size, while

accounting for faulty replicas.

This lens gives a protocol with both strictly stronger fairness and

better liveness properties than prior work. We specifically adapt the

Ranked Pairs [12] method to this streaming setting. This algorithm

can be applied on top of any of the communication protocols (in

various network models) of prior work for immediate liveness and

fairness improvements. Prior work relies on a fixed choice of𝛾 and a

bound on the number of faulty replicas 𝑓 , but we show that Ranked

Pairs satisfies our definition for every
1

2
< 𝛾 ≤ 1 simultaneously

and for any 𝑓 , where fairness guarantees degrade as 𝑓 increases.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-

tolerant systems and networks; • Theory of computation →
Streaming, sublinear and near linear time algorithms.
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1 INTRODUCTION
We study the problem of ordering transactions in a replicated state

machine. In the standard setting, each of a set of 𝑛 distinct replicas
maintains a copy of a state machine. Replicas communicate to agree

on a totally-ordered log of transactions 𝜏1 ≺ 𝜏2 ≺ . . . , and then

each replica applies transactions in this order to its state machine.

There are many communication protocols through which repli-

cas can agree on some total order (solving the “total order broadcast”
problem; Défago et al. [6] gives a survey). Yet in many systems,

most notably within today’s public blockchains, significant finan-

cial value can be derived from ordering transactions in specific ways

[5]. These systems must therefore agree on not just any ordering

but an “optimal” one, for some notion of optimal.

The key observation is that this problem is a novel streaming

variation of the classic preference aggregation problem of social

choice theory [1, 3, 4, 7, 10]. Prior protocols broadly run in two

phases [2, 8, 9, 13]; first, some network protocol (in varying network

models) produces agreement on a reported “vote” from each replica

on the ordering of a set of transactions (in social choice parlance,

a “ranking” on a set of “candidates”). And second, these reported

votes are aggregated into a single, total order. This second phase

is the subject of our study, and is agnostic to the communication

protocol and network model of the first phase.

Two key differences separate this problem from the classic social

choice setting. First, the number of transactions (“candidates”) is

countably infinite (as clients can continually send new transactions

for an unbounded time). And second, the system must produce the

output ranking in a streaming fashion. It cannot wait to see the

reported orders over the entire (infinite) set of transactions before

making a decision on the relative ordering of two transactions.

Instead, the system must output an append-only, totally-ordered

log of transactions. Furthermore, the system should minimize the

delay between when a client sends a transaction and when that

transaction is appended to the output.

While we believe this problem to be interesting in its own right,

studying it directly through the lens of classic social choice theory,

enables us to develop an ordering algorithm with both stronger

“fairness” (the key property studied in prior work) and stronger

liveness guarantees than the prior work. This algorithm could be

deployed on top of any of the network protocols of prior work. The

full version [11] includes precise comparisons with the prior work.
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As an additional complication, replicas might adjust their re-

ported orderings in response to strategic considerations. One desir-

able property of an order aggregation process is that the influence

of a (potentially colluding) subset of replicas is bounded and pre-

cisely quantified. Mirroring the prior work, we write here that it

is “faulty” behavior for a replica to report anything other than the

order in which it observes transactions arriving over the network.

There is a wide body of social choice literature on this underly-

ing aggregation problem. Our goal is to demonstrate an application

for our streaming version of the problem, and to demonstrate the

value of using social choice results in this application by target-

ing the precise desiderata raised in prior work. There are many

other natural desiderata, notions of fairness, and aggregation rules

that may be practically useful. The application of social-choice

style aggregation rules in this streaming setting poses a number of

interesting open questions. For example, if replicas have distinct

financial motivations, or accept bribes from clients to order transac-

tions in specific ways, is there an aggregation rule that maximizes

(perhaps approximately) social welfare? For a reader coming from

social choice theory, “transaction” could be replaced by “candidate”,

and “an ordering vote” by “a ranking.”

2 MODEL
We consider a model in which there are 𝑛 replicas cooperating to
develop a total ordering of transactions. Transactions are received

over the network from clients. We say that the ordering in which a

replica receives transactions is that replica’s observed ordering.

Definition 2.1 (Ordering Preference). An Ordering Preference on a

(finite or countably-infinite) set of transactions is a total ordering
1

𝜎𝑖 =

(
𝜏𝑖1 ≺ 𝜏𝑖2 ≺ 𝜏𝑖3 ≺ . . .

)
However, at any finite time, each replica can have received only

a finite number of transactions. Replicas periodically submit these

finite orderings to a ranking algorithm. The ranking algorithm is

run repeatedly over time. We assume that that replicas can reliably

broadcast their votes to each other, and come to agreement on the

votes of all replicas (i.e., agree on the input to a ranking algorithm),

but abstract away the communication protocol and network model.

Definition 2.2 (Ordering Vote). A replica 𝑖 submits to a ranking

algorithm an ordering vote on a set of 𝑘 transactions, 𝜎 =

(
𝜏𝑖1 , ...𝜏𝑖𝑘

)
.

(where 𝜏𝑖 𝑗
1

≺ 𝜏𝑖 𝑗
2

for 𝑗1 < 𝑗2).

Definition 2.3 (Ranking Algorithm). A deterministic algorithm

A(𝜎1, . . . , 𝜎𝑛) takes as input an ordering vote from each replica and

outputs an ordering 𝜎 on a subset of the transactions in the input.

The output need not include every transaction in the input. We

say that a replica is honest if its observed ordering always extends

its ordering vote, and if whenever it submits a vote, it contains all

transactions that the replica has observed at that time. Otherwise,

the replica is faulty.

3 MINIMAL BATCH ORDER FAIRNESS
We focus on the notion of “fairness” proposed and studied in prior

work [2, 8, 9], but strengthen it to provide meaningful and achiev-

able guarantees.

1
Isomorphic to a subset of 𝜔

Definition 3.1 (𝛾-batch-order-fairness). Suppose that 𝜏 and 𝜏 ′ are
received by all nodes. If𝛾𝑛 nodes received 𝜏 before 𝜏 ′, then a ranking
algorithm outputs 𝜏 no later than 𝜏 ′.

Aequitas [9] outputs transactions in batches, and “no later than”

means “in the same batch.” Transactions within a batch are ordered

arbitrarily. Themis [8] outputs a total ordering, with the assertion

that this total ordering could be divided into contiguous (disjoint)

batches satisfying this property.

There are two problems with this definition. First, prior work

relies on a fixed choice of parameter 𝛾 , yet neither higher nor

lower 𝛾 gives stronger fairness properties. Second, Definition 3.1 is

vacuously satisfied on all output orderings, for every 𝛾 , and thus

provides no meaningful ordering guarantees (every ordering can

be divided into contiguous, disjoint batches satisfying this property,

by putting every transaction into one batch). Instead, we construct

the following, stronger definition.

Definition 3.2 ((𝛾, 𝛿)-minimal-batch-order-fairness). An ordering

is (𝛾, 𝛿)-minimally-batch-order-fair if, for any transaction pair (𝜏, 𝜏 ′)
that is received in that order by at least 𝛾𝑛 replicas but output by

the protocol in the reverse ordering, then there is a sequence of

transactions 𝜏 ′ = 𝜏1, ..., 𝜏𝑘 = 𝜏 where at least (𝛾 − 2𝛿)𝑛 replicas

receive 𝜏𝑖 ≺ 𝜏𝑖+1 and 𝜏𝑖 is output before 𝜏𝑖+1.

Definition 3.2 captures the notion that a protocol cannot dis-

tinguish between a 𝛿-fraction of faulty replicas misreporting a

transaction ordering. Given this indistinguishable 𝛿 fraction, the

protocol outputs minimally-sized batches. A stronger notion of

minimality, in the face of faulty replicas, is not achievable.

This definition does not discuss “batches” or “minimality,” but ap-

proximately minimal batches (the strongly connected components

of Lemma 3.4) can be recovered from any ordering satisfying it. The

second condition of Lemma 3.4 limits the size of output batches.

Definition 3.3 (Ordering Graph). Suppose that replicas report or-
dering votes (𝜎1, ..., 𝜎𝑛) on a set of transactions 𝑉 . The Ordering
Graph 𝐺(𝜎1, ...𝜎𝑛) is a complete, weighted directed graph with ver-

tex set 𝑉 and, for each transaction pair (𝜏, 𝜏 ′), an edge of weight

𝑤 (𝜏, 𝜏 ′) = 𝛼 if 𝛼𝑛 replicas report receiving 𝜏 before 𝜏 ′.

Lemma 3.4. Suppose that an output ordering satisfies (𝛾, 𝛿)-minimal-
batch-order-fairness. Compute the ordering graph 𝐺 , drop all edges
with weight below 𝛾 − 𝛿 , and compute the strongly connected compo-
nents of the remainder.
• If 𝛾𝑛 replicas received 𝜏 ≺ 𝜏 ′, then either 𝜏 and 𝜏 ′ are in the
same strongly connected component, or all transactions in the
component containing 𝜏 are output before any transactions in
the component containing 𝜏 ′.
• If 𝛾𝑛 replicas receive 𝜏 ≺ 𝜏 ′ and there is no sequence of trans-
actions 𝜏 ′ = 𝜏1, ..., 𝜏𝑘 = 𝜏 where at least (𝛾 − 2𝛿)𝑛 replicas
receive 𝜏𝑖 ≺ 𝜏𝑖+1, then all transactions in the component con-
taining 𝜏 are output before any transactions in the component
containing 𝜏 ′.

4 STREAMING RANKED PAIRS
We now turn to the streaming setting that is our focus. At minimum,

a streaming algorithm must be monotonic and asymptotically live.
If replicas extend their ordering votes, the algorithm, when run
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again on the extensions, must only extend its prior output, and

must eventually output each transaction.

Definition 4.1 (Monotonicity). A ranking algorithm A(·, . . . , ·)
is monotonic if, given two sets of ordering votes (𝜎1, . . . , 𝜎𝑛) and(
𝜎′

1
, . . . , 𝜎′𝑛

)
, such that 𝜎′

𝑖
extends 𝜎𝑖 for all 𝑖 ∈ [𝑛], A(𝜎′

1
, . . . , 𝜎′𝑛)

extends A(𝜎1, . . . , 𝜎𝑛).

Definition 4.2 (Asymptotic Liveness). A ranking algorithmA(·, . . . , ·)
is asymptotically live if, given any set of countably infinite ordering

votes (𝜎̂1, . . . , 𝜎𝑛) and any transaction 𝜏 in those votes, there exists

an 𝑁 such that when each 𝜎𝑖 is trunctated to the first 𝑁 elements

of the ordering to produce 𝜎𝑖 , 𝜏 is included in A(𝜎1, . . . , 𝜎𝑛).

A monotonic ranking algorithm implies a well-formed definition

for aggregating a set of orderings on countably infinite sets of

transactions. 𝜏 comes before 𝜏 ′ in the infinite case if there exists a

finite subset of the input such that the algorithm outputs 𝜏 ≺ 𝜏 ′.
The Ranked Pairs algorithm [12] computes the ordering graph

(Defn. 3.3), iterates through edges in order of weight, and greedily

adds to edges to a set, so long as it does not create a cycle.

Theorem 4.3. Given a ordering vote (on every transaction in a
finite set) from every replica, Ranked Pairs Voting simultaneously
satisfies (𝛾,

𝑓
𝑛 )-minimal-batch-order-fairness for every 𝛾 , and does not

depend on any fixed bound on 𝑓 .

However, a streaming version of Ranked Pairs cannot always

know whether the non-streaming equivalent would accept an edge.

These edges are marked “indeterminate.” First, we construct an

ordering graph that overapproximates the unknown information.

Definition 4.4 (Streamed Ordering Graph).
Suppose that each replica submits an ordering vote (𝜎1, ..., 𝜎𝑛). Let

𝑉 be the set of all transactions that appear in each vote, and let 𝑣

be the “future” vertex. The Streamed Ordering Graph is a weighted,

directed, complete graph 𝐺 = (𝑉 ′, 𝐸) on vertex set 𝑉 ∪ {𝑣}.
For each 𝜏 and 𝜏 ′, set weights𝑤 (𝜏, 𝜏 ′) and𝑤 (𝜏 ′, 𝜏 ) as in Definition

3.3. Set 𝑤 (𝜏, 𝑣) = 1 for all 𝜏 . If there exists 𝜏 ′ that appears in the

votes of some but not all replicas and which preceeds 𝜏 in at least

one replica’s vote, set𝑤 (𝑣, 𝜏) = 1, and otherwise𝑤 (𝑣, 𝜏) = 0.

Two details require mention. First, rather than recompute the

entire ordering from scratch on every repeated invocation of the

algorithm, Algorithm 1 caches the decisions made in a prior in-

vocation, so the marginal runtime of the algorithm depends only

on the number of new edges and transactions that arrive since

the previous invocation. Second, the algorithm lazily (implicitly)

constructs a tiebreaking rule between edges of equal weight; this is

crucial for asymptotic liveness.

Lemma 4.5. Consider a counterfactual scenario where clients stop
sending transactions, all replicas eventually receive every transaction,
and every replica includes every transaction in its output vote.

Whenever Algorithm 1 includes a determinate edge in 𝐻 (resp.
excludes an edge), that edge is included (resp. excluded) in the output
of the non-streaming Ranked Pairs on the counterfactual input.

Theorem 4.6. Algorithm 1 is monotonic, and its output matches
an initial segment of the output of the non-streaming Ranked Pairs
(on the counterfactual of Lemma 4.5).

ALGORITHM 1: Streaming Ranked Pairs

Input: An ordering vote from each replica {𝜎𝑖 }𝑖∈[𝑛]

Input: 𝐻̂ , the graph computed in the preceeding invocation

of Algorithm 1

𝐺 = (𝑉 , 𝐸,𝑤 )← 𝐺(𝜎1, ..., 𝜎𝑛)

𝐻 ← (𝑉 , ∅)
foreach edge (𝜏, 𝑣) and (𝑣, 𝜏) with𝑤 (𝑒) = 1 do

Add 𝑒 to 𝐻 , and mark it as indeterminate
end
Add all determinate edges of 𝐻̂ to 𝐻 , marked determinate
foreach 𝛾 in (1, 𝑛−1

𝑛 , 𝑛−2

𝑛 , . . . , 0) do
𝐸𝛾 ← {𝑒 ∈ 𝐸 |𝑤 (𝑒) = 𝛾}, ordered arbitrarily

repeat
𝑒 = (𝜏𝑖 , 𝜏 𝑗 )← first element of 𝐸𝛾
𝑈𝜏𝑖 ,𝜏 𝑗 ← (𝑉 \ (𝑅𝜏𝑖 ∪ 𝑃𝜏 𝑗 )) ∪ {𝑣}
If there is a directed path in 𝐻 ∩𝑈𝜏𝑖 ,𝜏 𝑗 from 𝜏 𝑗 to 𝜏𝑖
where every edge is determinate, then do not

include the edge in 𝐻 . Remove the edge from 𝐸𝛾 .

Else if there is no directed path in 𝐻 ∩𝑈𝜏𝑖 ,𝜏 𝑗 from 𝜏 𝑗
to 𝜏𝑖 where every edge is either determinate or
indeterminate, add (𝜏𝑖 , 𝜏 𝑗 ) to 𝐻 and mark it as

determinate. Remove the edge from 𝐸𝛾 .

Otherwise, defer 𝑒 to the end of the ordering on 𝐸𝛾 .

until 𝐸𝛾 = ∅ or no progress is made in a full loop over 𝐸𝛾 ;
Mark all remaining edges in 𝐸𝛾 as indeterminate

end
Output: The topological sort of 𝐻 , up to (not including) the

first transaction bordering an indeterminate edge

Liveness follows from studying how marking an edge indeter-
minate propagates through the algorithm. Because of the way that

the algorithm visits edges of equal weight, an edge is only marked

indeterminate if there is an indeterminate edge of strictly higher

weight that is “nearby.”

Lemma 4.7. If Algorithm 1 marks an edge (𝜏𝑖 , 𝜏 𝑗 ) with weight 𝑘𝑛 as
indeterminate, there must be a path from 𝜏 𝑗 to 𝜏𝑖 contained in𝑈𝜏𝑖 ,𝜏 𝑗

that contains an indeterminate edge of weight at least 𝑘+1

𝑛 .

Asymptotic liveness follows by bounding the length of a chain

of indeterminate edges (to at most 𝑛).

Theorem 4.8. Algorithm 1 is asymptotically live.

Precise liveness depends on the network model. Our metric is the

liveness delay induced by our ranking algorithm (which is added

to that of an underlying communication protocol). Assumption 1

gives an example communication assumption.

Assumption 1 (Synchronous Network). If a client sends a
transaction 𝜏 at time 𝑡 , all honest replicas include 𝜏 in their ordering
votes before time 𝑡 + ∆.

Theorem 4.9. A transaction 𝜏 is contained in the output of the
algorithm of Algorithm 1 after at most (𝑛 + 1)∆ time.
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